|
Besides complexity intended as a difficulty to compute a function (see computational complexity), in modern computer science and in statistics another complexity index of a function stands for denoting its information content, in turn affecting the difficulty of learning the function from examples. ''Complexity indices'' in this sense characterize the entire class of functions to which the one we are interested in belongs. Focusing on Boolean functions, the detail of a class of Boolean functions ''c'' essentially denotes how deeply the class is articulated. To identify this index we must first define a ''sentry function'' of . Let us focus for a moment on a single function ''c'', call it a ''concept'' defined on a set of elements that we may figure as points in a Euclidean space. In this framework, the above function associates to ''c'' a set of points that, since are defined to be external to the concept, prevent it from expanding into another function of . We may dually define these points in terms of sentinelling a given concept ''c'' from being fully enclosed (invaded) by another concept within the class. Therefore we call these points either ''sentinels'' or ''sentry points''; they are assigned by the sentry function to each concept of in such a way that: # the sentry points are external to the concept ''c'' to be sentineled and internal to at least one other including it, # each concept including ''c'' has at least one of the sentry points of ''c'' either in the gap between ''c'' and , or outside and distinct from the sentry points of , and # they constitute a minimal set with these properties. The technical definition coming from is rooted in the inclusion of an augmented concept made up of ''c'' plus its sentry points by another in the same class. == Definition of sentry function == For a concept class on a space , a ''sentry function'' is a total function satisfying the following conditions: # Sentinels are outside the sentineled concept ( for all ). # Sentinels are inside the invading concept (Having introduced the sets , an invading concept is such that and . Denoting the set of concepts invading ''c'', we must have that if , then ). # is a minimal set with the above properties (No exists satisfying (1) and (2) and having the property that for every ). # Sentinels are honest guardians. It may be that but so that . This however must be a consequence of the fact that all points of are involved in really sentineling ''c'' against other concepts in and not just in avoiding inclusion of by . Thus if we remove remains unchanged (Whenever and are such that and , then the restriction of to is a sentry function on this set). is the ''frontier'' of ''c'' upon . With reference to the picture on the right, is a candidate frontier of against . All points are in the gap between a and . They avoid inclusion of in , provided that these points are not used by the latter for sentineling itself against other concepts. ''Vice versa'' we expect that uses and as its own sentinels, uses and and uses and analogously. Point is not allowed as a sentry point since, like any diplomatic seat, it should be located outside all other concepts just to ensure that it is not occupied in case of invasion by . 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Complexity index」の詳細全文を読む スポンサード リンク
|